Главная » Статьи » Переходное сопротивление автоматов (АВВ, Schneider Electric, IEK, EKF, КЭАЗ, TDM, Elvert, Legrand, Hager, Eaton, CHINT, DEKraft)

Переходное сопротивление автоматов (АВВ, Schneider Electric, IEK, EKF, КЭАЗ, TDM, Elvert, Legrand, Hager, Eaton, CHINT, DEKraft)

perexodnoe_soprotivlenie_avtomatov

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Эксперименты с нашими автоматами продолжаются и сегодня на очереди измерение их переходного сопротивления, с дальнейшим расчетом падения напряжения и мощности рассеивания на полюсе.

Напомню, что в прошлый раз я проверял автоматы током 1,13 от номинального с измерением температуры их нагрева (часть 1 и часть 2). А в этот раз решил измерить переходное сопротивление постоянному току всех участников эксперимента и сравнить их значения между собой.

В принципе, уже по температуре нагрева автоматов из предыдущих экспериментов становится понятно, что разница между ними есть, и причем, по сравнению с некоторыми экземплярами, существенная.

ispytaniya_avtomatov_abb_legrand_hager_eaton_chint_dekraft_21

ispytaniya_avtomatov_abb_schneider-electric_iek_ekf_keaz_tdm_elvert_32

Помимо сравнения переходного сопротивления автоматов между собой, измеренные данные, я надеюсь, что пригодятся и проектировщикам для более точного расчета токов короткого замыкания и определения полного сопротивления петли фаза-ноль в электроустановках до 1000 (В), ведь в расчетах необходимо учитывать величину переходного сопротивления коммутационных аппаратов и прочих соединений, а в справочниках и ГОСТах такой информации практически нет.

Вот например, в ГОСТе 28249-93 имеется Таблица 21, где указаны усредненные значения активного и реактивного сопротивлений автоматов серий ВА, А3700 (рекомендую ознакомиться с моей статьей про испытания автомата А3712, при котором обнаружился заводской брак) и «Электрон». Как видите, в таблице указаны значения для автоматов только с номинальным током 50 (А) и выше.

perexodnoe_soprotivlenie_avtomatov_2

В последнее время производители все же размещают информацию по внутреннему сопротивлению модульных автоматов, а также мощности их рассеивания, но к сожалению, далеко не все.

Но я постараюсь восполнить этот пробел. Итак, поехали.

Сразу хотелось бы уточнить, что в измеренное значение сопротивления автомата будет входить:

  • сопротивление контактов между клеммами и соединительными проводами прибора
  • сопротивление верхней и нижней клемм автомата
  • сопротивление силового контакта автомата (подвижный с неподвижным)
  • сопротивление катушки электромагнитного расцепителя
  • сопротивление биметаллической пластины теплового расцепителя
  • сопротивление гибких проводников
  • сопротивление прочих токоведущих частей

perexodnoe_soprotivlenie_avtomatov_3

perexodnoe_soprotivlenie_avtomatov_4

В итоге, мы получим активное сопротивление постоянному току всех наших модульных автоматов.

perexodnoe_soprotivlenie_avtomatov_5

Я конечно понимаю, что измерять переходное сопротивление автоматов необходимо при температуре 60°С, 70°С или даже 80°С, т.е. имитируя его нагрев как при номинальном токе, но не всегда ток в цепи может быть номинальным. Некоторые автоматы практически весь свой срок эксплуатации могут работать при токах гораздо меньше номинальных.

Поэтому я решил измерить значения переходного сопротивления автоматов в холодном состоянии, т.е. при температуре окружающего воздуха 25°С, а в дальнейшем эти значения можно в любое время привести непосредственно к другим температурам нагрева.

Производить замеры я буду с помощью микроомметра MMR-600 (про него я неоднократно рассказывал в своих статьях, например, в статье про испытание силовых трансформаторов).

perexodnoe_soprotivlenie_avtomatov_6

Вот весь перечень испытуемых автоматов:

  • SH201L (ABB, Германия)
  • iC60N (Schneider Electric, Франция)
  • iK60N (Schneider Electric, Таиланд)
  • Easy9 (Schneider Electric, Индия)
  • ВА47-29 (IEK, Россия-Китай)
  • ВА47-63 (EKF, Россия-Китай)
  • ВМ63-1 KEAZ OptiDin (КЭАЗ, Россия-Китай)
  • ВА47-29 (TDM, Россия-Китай)
  • Z406 (Elvert, Россия-Китай)
  • S201 (ABB, Германия)
  • S201M (ABB, Германия)
  • Тх3 (Legrand, Польша)
  • МУ116 (Hager, Франция)
  • PL4 (Eaton, Сербия)
  • DZ47-60 (CHINT, Китай)
  • ВА-101 (DEKraft, Китай)

1. SH201L (ABB)

Чтобы подключить щупы прибора MMR-600 к автоматам, необходимо сделать от них небольшие короткие выводы. В итоге я подключил к автомату с обоих сторон одинаковой длины соединительные провода, к которым уже подключил щупы от прибора. Если у щупов сила зажима постоянно-одинаковая, то у подключаемых проводов к автоматам усилие будет зависеть от силы затяжки их винтового зажима. Скажу сразу, что я буду стараться затягивать провода в автоматах с одинаковым усилием, практически до упора.

perexodnoe_soprotivlenie_avtomatov_7

Всего я буду производить два измерения по следующему алгоритму: включаю автомат — произвожу измерение переходного сопротивления — отключаю автомат — включаю автомат — произвожу второе измерение.

Как видите, переходное сопротивление модульного автомата SH201L (ABB) составляет 9,37 (мОм).

perexodnoe_soprotivlenie_avtomatov_8

При втором измерении переходное сопротивление этого же автомата составило 9,52 (мОм).

perexodnoe_soprotivlenie_avtomatov_9

В итоге я получил два значения переходного сопротивления, максимальное из которых я занесу в общую результирующую таблицу.

У остальных автоматов я буду размещать фотографию только с максимальным измеренным значением.

2. iC60N (Schneider Electric)

Переходное сопротивление автомата iC60N составило 7,01 (мОм).

perexodnoe_soprotivlenie_avtomatov_10

3. iK60N (Schneider Electric)

Переходное сопротивление автомата iK60N составило 8,24 (мОм).

perexodnoe_soprotivlenie_avtomatov_11

Кстати, у меня на сайте имеется статья, где я производил сравнение автоматов iK60N (Schneider Electric) и ВА47-29 (IEK) по времени срабатывания при разных токах, в том числе производил измерение их переходного сопротивления до и после испытаний. Так вот у автомата iK60N сопротивление до испытаний составляло 8,44 (мОм), а после — 10,04 (мОм).

ВА47-29_от_IEK_и_iK60N_от_Schneider_Electric_3

ВА47-29_от_IEK_и_iK60N_от_Schneider_Electric_14

Наш автомат проверку теплового и электромагнитного расцепителей еще не проходил, и как видите, его значение 8,24 (мОм) соизмеримо со значением 8,44 (мОм), что говорит о постоянстве характеристик данной серии автоматов и правильности проведенных измерений.

4. Easy9 (Schneider Electric)

perexodnoe_soprotivlenie_avtomatov_12

5. ВА47-29 (IEK)

perexodnoe_soprotivlenie_avtomatov_13

Опять же вернусь к той статье про сравнение автоматов iK60N (Schneider Electric) и ВА47-29 (IEK), о которой говорил чуть выше. Как видите, наше измеренное значение 6,69 (мОм) соизмеримо со значением 6,28 (мОм), что опять таки подтверждает стабильность измеренных параметров данной серии автоматов и применяемого прибора MMR-600.

ВА47-29_от_IEK_и_iK60N_от_Schneider_Electric_4

6. ВА47-63 (EKF)

У данного автомата я заметил некоторый разбег измеренных значений. Вот смотрите, при первом замере сопротивление составило 8,7 (мОм), при втором — 6,58 (мОм), при третьем — 7,48 (мОм), при четвертом — 6,08 (мОм) и т.д. Каждый раз значение изменялось в пределах 1-2 (мОм).

perexodnoe_soprotivlenie_avtomatov_14

perexodnoe_soprotivlenie_avtomatov_15

perexodnoe_soprotivlenie_avtomatov_16

7. ВМ63-1 KEAZ OptiDin (КЭАЗ)

Напомню, что данный автомат был в «лидерах» по нагреву в первой части экспериментов, не считая TDM, и нагрелся аж до 84°С.

ispytaniya_avtomatov_abb_schneider-electric_iek_ekf_keaz_tdm_elvert_26

Переходное сопротивление автомата ВМ63-1 составило 10,9 (мОм).

perexodnoe_soprotivlenie_avtomatov_17

8. ВА47-29 (TDM)

А вот к этому автомату нужно присмотреться получше, т.к. среди двух экспериментов он был признан явным «лидером» и нагрелся до температуры 88°C (местами до 90°С).

ispytaniya_avtomatov_abb_schneider-electric_iek_ekf_keaz_tdm_elvert_24

При первом измерении переходное сопротивление у автомата ВА47-29 (TDM) составило 49,7 (мОм), при втором — 110,9 (мОм), при третьем — 47,4 (мОм), при четвертом 135,1 (мОм), при пятом — 118,2 (мОм) и т.д. Каждый раз в значительных пределах изменялось измеряемое значение. В итоге можно смело зафиксировать его максимальное значение 135,1 (мОм).

perexodnoe_soprotivlenie_avtomatov_18

perexodnoe_soprotivlenie_avtomatov_20

perexodnoe_soprotivlenie_avtomatov_19

9. Z406 (Elvert)

perexodnoe_soprotivlenie_avtomatov_21

10. S201 (ABB)

perexodnoe_soprotivlenie_avtomatov_22

11. S201M (ABB)

perexodnoe_soprotivlenie_avtomatov_23

Кстати, в паспорте для автоматов S201 и S201М указано, что их переходное сопротивление находится в пределах 7-8 (мОм), что вполне подтверждается нашими измерениями.

12. Тх3 (Legrand)

perexodnoe_soprotivlenie_avtomatov_24

13. МУ116 (Hager)

По аналогии с автоматом ВА47-63 (EKF), у данного автомата имеется разбег измеренных значений в пределах 1-2 (мОм). При первом измерении сопротивление составило 8,62 (мОм), при втором — 9,17 (мОм), при третьем — 9,63 (мОм), при четвертом — 11,02 (мОм), при пятом — 10,77 (мОм) и т.д.

perexodnoe_soprotivlenie_avtomatov_25

perexodnoe_soprotivlenie_avtomatov_26

perexodnoe_soprotivlenie_avtomatov_27

14. PL4 (Eaton)

perexodnoe_soprotivlenie_avtomatov_28

15. DZ47-60 (CHINT)

Напомню, что этот автомат тоже был в «лидерах» по нагреву, но только уже во второй части экспериментов, и нагрелся до температуры 85,1°С.

ispytaniya_avtomatov_abb_legrand_hager_eaton_chint_dekraft_11

Но при всем при этом его переходное сопротивление составило не более 6,96 (мОм).

perexodnoe_soprotivlenie_avtomatov_29

16. ВА-101 (DEKraft)

perexodnoe_soprotivlenie_avtomatov_30

Под итожим.

Измеренное сопротивление у всех автоматов имеет практически одинаковое значение и находится в пределах от 6 до 10 (мОм), за исключением автомата ВА47-29 (TDM), у которого оно составило больше 100 (мОм).

perexodnoe_soprotivlenie_avtomatov_31

У автоматов ВА47-63 (EKF) и МУ116 (Hager) наблюдался некоторый разбег измеренных значений в пределах от 1 до 2 (мОм).

Падение напряжения и мощность рассеивания автоматов

Зная переходное сопротивление автомата, можно примерно рассчитать падение напряжения и мощность рассеивания на его полюсе при конкретном токе.

Рассмотрим для примера расчет падения напряжения и мощности рассеивания для автомата SH201L (ABB) при токе 18,6 (А).

Напомню, что падение напряжения рассчитывается по всем известной формуле Закона Ома:

U = I·R

В первую очередь нам необходимо определить переходное сопротивление автомата (медных проводников) с учетом его нагрева до температуры 72,7°С (73°С) при прохождении через него тока 18,6 (А).

ispytaniya_avtomatov_abb_schneider-electric_iek_ekf_keaz_tdm_elvert_20

Из справочников я принял, что сопротивление медных проводников увеличивается на 0,4% при нагреве их на 1°С. Сопротивление автомата SH201L (ABB) при температуре 25°С составило 0,00952 (Ом), а значит при увеличении температуры до 73°С (разница в 48°С) переходное сопротивление автомата увеличится на 19,2%, т.е. при 73°С составит 0,0113 (Ом).

Соответственно, падение напряжения на полюсе автомата SH201L (ABB) при токе 18,6 (А) составит:

U = I·R = 18,6 · 0,0113 = 0,21 (В)

А теперь определим и мощность рассеивания на полюсе рассматриваемого автомата SH201L (ABB) по известной формуле:

Р = I² · R = 18,6 · 18,6 · 0,0113 = 3,9 (Вт)

Произведу аналогичные расчеты и для других автоматов, а полученные значения занесу в результирующую таблицу.

perexodnoe_soprotivlenie_avtomatov_32

Получившиеся значения падения напряжения и мощности рассеивания у рассматриваемых автоматов практически одинаковые и находятся в пределах от 0,15 до 0,25 (В) и от 2,77 до 4,66 (Вт), что соответствует данным каталогов некоторых производителей. Исключение составляет лишь автомат ВА47-29 (TDM), у которого падение напряжения составило 3,15 (В) и мощность рассеивания 58,55 (Вт).

Весь процесс измерений Вы также можете посмотреть в моем видеоролике:

В следующих статьях я проверю все эти автоматы:

  • условным током расцепления (1,45·In)
  • на срабатывание теплового расцепителя при токах (2,55·In и 4·In)
  • на срабатывание электромагнитного расцепителя при токах (5·In и 10·In)
  • краш-тесты большими токами, вплоть до 1000 (А)

P.S. Если у Вас имеются какие-то вопросы по проведенным измерениям, то смело задавайте их в комментариях. Всем спасибо за внимание. До новых встреч!

Если статья была Вам полезна, то поделитесь ей со своими друзьями: