Главная » Статьи » Обрыв вторичной обмотки трансформатора тока. К чему приводит?!

Обрыв вторичной обмотки трансформатора тока. К чему приводит?!

obryv_v_tokovyx_cepyax

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Несколько дней назад мне передали замечание, что на одном из фидеров перестал показывать амперметр, хотя нагрузка на фидере была, и причем не маленькая, около 30-50 (А).

Кстати, данная неисправность произошла в распределительном устройстве напряжением 10 (кВ) исполнения КСО.

Щитовой амперметр типа Э30 подключен через трансформатор тока ТПОЛ-10 с коэффициентом трансформации 150/5.

obryv_v_tokovyx_cepyax_3

obryv_v_tokovyx_cepyax_4

По приезду на подстанцию я обнаружил, что произошел обрыв провода на щитовом амперметре.

obryv_v_tokovyx_cepyax_6

Амперметр установлен на дверце ячейки КСО и, видимо, в течение длительной эксплуатации произошло перегибание жилок гибкого проводника, что и привело к обрыву.

obryv_v_tokovyx_cepyax_7

Напомню, что согласно ПУЭ, п.3.4.4, сечение токовых цепей должно быть не менее 2,5 кв.мм по меди или 4 кв.мм по алюминию. В моем случае применен медный гибкий провод ПВ-3 (ПуГВ) сечением 2,5 кв.мм.

obryv_v_tokovyx_cepyax_2

В связи со случившейся ситуацией я и решил написать статью о том, что произойдет с трансформаторами тока при обрыве их вторичной цепи.

Итак, поехали.

Во всех правилах, хоть в ПОТЭУ (п.42.2), хоть в ПТЭЭП (п.2.6.24), строго настрого запрещено размыкать вторичную цепь ТТ и об этом должны знать все без исключения.

obryv_v_tokovyx_cepyax_5

К тому же об этом всегда напоминают в виде надписи «Внимание! Опасно! На разомкнутой обмотке напряжение», а то вдруг кто забудет!

obryv_v_tokovyx_cepyax_8

parametry_transformatora_toka_параметры_трансформатора_тока

А что же все таки произойдет с трансформатором тока при обрыве его вторичной цепи? Давайте разберемся!

Правда для этого нам необходимо рассмотреть принцип работы трансформатора тока и его устройство. Сильно вдаваться в подробности устройства ТТ я не буду, т.к. цель статьи заключается немного в другом, да и разновидностей ТТ в природе не мало. Если кому интересно, то могу рассказать об устройстве ТТ более подробнее на примере конкретного типа, но уже в другой своей публикации.

В общем, первичная обмотка трансформатора тока чаще всего состоит из одного витка или шины, которая подключена последовательно в силовую цепь, где необходимо измерять или контролировать ток.

odnovitkovye_i_mnogovitkovye_transformatory_toka_одновитковые_и_многовитковые_трансформаторы_тока

odnovitkovye_i_mnogovitkovye_transformatory_toka_одновитковые_и_многовитковые_трансформаторы_тока

odnovitkovye_i_mnogovitkovye_transformatory_toka_одновитковые_и_многовитковые_трансформаторы_тока

Встречаются также и трансформаторы тока с многовитковой первичной обмоткой.

odnovitkovye_i_mnogovitkovye_transformatory_toka_одновитковые_и_многовитковые_трансформаторы_тока

Вот например, трансформаторы тока ТПФМ-10 имеют многовитковую первичную обмотку. На данный момент таких ТТ на наших подстанциях осталось уже немного, т.к. мы с некоторой периодичностью заменяем их на более новые ТПОЛ-10.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока_11

obryv_v_tokovyx_cepyax_9

Подробнее про классификацию трансформаторов тока читайте в моей отдельной статье (вот ссылочка).

Первичная обмотка (шина) имеет малое количество витков (чаще всего один) и большое сечение, соизмеримое с номинальным током силовой нагрузки.

Шина первичной обмотки проходит через магнитопровод, на котором намотана вторичная обмотка.

odnovitkovye_i_mnogovitkovye_transformatory_toka_одновитковые_и_многовитковые_трансформаторы_тока

Вторичная обмотка имеет много витков и малое сечение, и всегда замыкается накоротко, либо через малое сопротивление подключенных к ней реле и различных приборов (Zн).

obryv_v_tokovyx_cepyax_10

Сильно вдаваться в теорию я не буду, а попробую объяснить более по-простому.

При протекании тока в первичной обмотке трансформатора тока, по закону электромагнитной индукции возникает магнитный поток Ф1, который замыкается по магнитопроводу и пронизывает вторичную обмотку ТТ. В связи с этим, во вторичной обмотке ТТ наводится (индуцируется) ток I2 (при условии, что цепь замкнута), который образует магнитный поток Ф2, направленный встречно магнитному потоку Ф1. В итоге, в магнитопроводе образуется результирующий магнитный поток Фт, который называют основным или намагничивающим потоком.

Конструктора при проектировании рассчитывают сечение магнитопровода исходя из нормальной работы трансформатора тока, т.е. при его замкнутой вторичной обмотке. При нормальной работе трансформатора тока основной поток Фт не велик.

При разрыве вторичной обмотки ТТ произойдет следующее.

Во-первых, значительно увеличится основной магнитный поток Фт в магнитопроводе, что вызовет его нагрев. Это произойдет из-за того, что во вторичной обмотке не будет тока, а значит не возникнет встречного магнитного потока Ф2, который скомпенсирует магнитный поток Ф1 от первичной обмотки.

Во-вторых, на выводах вторичной обмотки наведется напряжение, соизмеримое с несколькими киловольтами.

Почему же наводится такое напряжение?!

Согласно закону сохранения энергии, мощность с генератора (первичная обмотка трансформатора тока в нашем случае) равна мощности, которую мы снимаем со вторичной обмотки с учетом потерь в меди и стали. В итоге, это выражение можно записать в таком виде :

Р1 = Рпот + Р2

Для простоты и наглядности не будем учитывать потери в меди и стали:

Р1 = Р2

Запишем мощности вышеприведенного выражения через токи и напряжения:

U1·I1 = U2·I2

А теперь представим, что тока I2 у нас не стало. Соответственно, выражение примет следующий вид:

U1·I1 = U2

У обычных трансформаторов напряжения при изменении вторичного тока I2 всегда изменяется ток в первичной обмотке I1 из-за наличия большого количества витков. А вот у трансформатора тока первичная обмотка имеет всего один виток, а изменить первичный ток I1 никак не возможно, потому что он является частью силовой цепи, где мы и контролируем его.

Поэтому, «U1·I1» является как бы константой (неизменной величиной) и для сохранения передаваемой мощности из первичной обмотки во вторичную в значительной степени увеличивается напряжение на вторичной обмотке до нескольких киловольт. В нормальном режиме на вторичной обмотке напряжение составляет буквально несколько вольт, а то и меньше (зависит от нагрузки).

На самом деле напряжение на первичной обмотке (напряжение падения на витке или шине) тоже немного изменяется, но это настолько малая величина, что ей можно смело пренебречь.

  1. Повышенное напряжение на выводах вторичной обмотки может привести к повреждению подключенных к ней устройств, в особенности это касается полупроводниковых приборов и различной электроники.
  2. Повышенное напряжение может привести к межвитковому замыканию вторичной обмотки или пробою ее на корпус, соответственно, выходу трансформатора тока из строя.
  3. Также повышенное напряжение опасно в плане поражения обслуживающего персонала электрическим током в случае ошибочного или самопроизвольного разрыва вторичных цепей ТТ.

Ну коль такая ситуация с обрывом токовых цепей ТТ фазы С у меня случилась на подстанции, то я и решил воспользоваться ситуацией, и измерить напряжение на разомкнутой вторичной обмотке.

obryv_v_tokovyx_cepyax_12

obryv_v_tokovyx_cepyax_14

Напряжение между выводами ТТ (421 и 410) составило 34,2 (В). Как видите, ничего критического нет и это далеко не киловольты. Тем не менее нужно учесть то, что во время измерения первичный ток ТТ составлял 30% от номинального. При номинальном же токе напряжение на разомкнутой обмотке будет гораздо и гораздо больше и не исключено, что там наведутся киловольты!

obryv_v_tokovyx_cepyax_13

Кстати, из-за насыщения магнитопровода напряжение на разомкнутой вторичной обмотке имеет несинусоидальную форму с резкими и острыми пиками.

В общем, решил фидер в ремонт не выводить. Установил на токовом клеммнике закоротку и произвел переподключение амперметра.

obryv_v_tokovyx_cepyax_15

Перезачистил оба конца, опрессовал их изолированными наконечниками и подключил к амперметру. Готово.

obryv_v_tokovyx_cepyax_17

Снял закоротку с клеммника и проверил показания амперметра. Как видите, теперь амперметр показывает ток нагрузки данного присоединения.

obryv_v_tokovyx_cepyax_20

Вот еще один пример разрыва вторичной цепи ТТ из моей практики.

При проведении пуско-наладочных работ в одном из торговых центров я обнаружил, что монтажники забыли закоротить трансформатор тока на фазе А.

obryv_v_tokovyx_cepyax_18

obryv_v_tokovyx_cepyax_19

И уже по традиции, рекомендую посмотреть видеоролик по материалам данной статьи:

Запомните главное и золотое Правило! Трансформатор тока работает в режиме короткого замыкания, т.е. его вторичная обмотка должна быть всегда замкнута накоротко или через малое сопротивление подключенных к ней устройств и приборов.

P.S. А у Вас случались обрывы вторичных цепей ТТ?! Какие последствия Вы наблюдали при этом? Поделитесь в комментариях своими случаями из практики. Вообще, если тема с обрывом токовых цепей ТТ Вам интересна, то можно взять какой-нибудь ТТ и снять зависимость вторичного напряжения от первичного тока. Трансформаторы тока у меня в наличии есть, хоть низковольтные, хоть высоковольтные 10 (кВ). В общем пишите, свои предложения в комментариях!

Если статья была Вам полезна, то поделитесь ей со своими друзьями: